El Ing. Hector L Gasquet reside actualmente en Estados Unidos. Se fue de Argentina hace muchos años, cuando las energías renovables no existían en nuestro país. Tiene 85 y conoce en detalle el funcionamiento de los sistemas solares fotovoltaicos. En una columna para Energía Estratégica, el experto hace docencia.

Por el Ing. Hector L Gasquet

Al efecto comenzaré presentando los bloques eléctricos que lo integran, para pasar, en futuros artículos, a la descripción más detallada de los mismos. El autor cree que este conocimiento básico es fundamental para poder entender la importancia de los cambios tecnológicos que se dan a conocer en esta publicación o en la internet.

Conocimientos básicos (no asustarse)

Para no interrumpir el escrito con demasiadas disgreciones, comenzaré asumiendo que el lector necesita conocer el significado de la terminología eléctrica que me veo obligado a usar. A continuación definiré las más importantes.

Circuito eléctrico (cerrado)

Es el paso (camino) que recorre la corriente eléctrica, saliendo del polo positivo del generador, siguiendo el cableado, para regresar a su polo negativo y, por último, por dentro del generador hasta alcanzar el punto de partida.

Corto circuito

Se produce cuando el paso de la corriente, en forma accidental, se vé “acortado” a la salida del generador (o banco de acumulación), cuando se conectan directamente los dos polos de salida, evitando que la corriente pase por la carga. Teóricamente el valor de la resistencia eléctrica es nulo y, por la ley de Ohm (a continuación) la corriente alcanza un valor infinito. En la práctica la corriente de cortocircuito es extremadamente elevada, y, por lo tanto, destructiva.

Corriente Continua (CC)

Es la que circula en un circuito cuando el generador no cambia su polaridad con el tiempo. Lo opuesto es la corriente alternada (CA), la que cambia de polaridad varias veces por segundo (50 veces en el sistema argentino).

Potencia eléctrica

Su valor, dado en Watts (W), representa la “rapidez de consumo” de la energía eléctrica.

Energía eléctrica

Su valor, dado en Watts.horas (W.h), o múltiplos de esta cantidad, como el KiloWatt.hora (KW.h = 1.000 W.h) representa el valor energético que se va a consumir (o producir).
Pérdidas óhmicas

La electricidad se manifiesta en forma de una corriente eléctrica, medida en Amperes (A), la que se establece en un circuito cuando se aplica una diferencia de voltaje, la que se mide en Volts (V). La corriente circula en los conductores (cables), los que siempre ofrecen una resistencia a su paso, la resistencia óhmica (R), la que se mide en Ohms ().

Las leyes físicas que gobiernan los circuitos eléctricos muestran que parte de la energía que entrega un generador se pierde, en forma de calor, debido a la resistencia óhmica (R). Su valor es P (W) = R x I2. Es importante que el lector note que el valor predominante es el de la corriente (al cuadrado).

Inter-relación entre valores (Ley de Ohm)

El voltaje (V), la corriente (I) y la resistencia (R) están inter-relacionados por la llamada Ley de Ohm, la que establece que V = R x I. El lector debe interpretar esta simple fórmula como: “Si conozco dos de los tres valores, el tercero estará dado por la relación llamada Ley de Ohm”. Es decir que: V/I = R; I = V/R resultan otras formas de la misma ley.

Carga

Este término se emplea para identificar un componente en el circuito que consume energía eléctrica.
Ejemplos: una luz que se enciende representa una carga eléctrica, lo mismo que encender un TV, activar un motor eléctrico o cualquier otro aparato eléctrico.

Circuito eléctrico

La Figura 1 muestra un circuito eléctrico típico para un sistema FV independiente de uso nocturno. He separado con líneas en puntos los diferentes bloques funcionales que lo integran para facilitar mi explicación. El circuito ilustrado muestra solamente los componentes mínimos.

Figura 1.- Diagrama en bloques funcionales

columna héctor

Bloque Generador

El panel (o paneles) FVs (1) forman el bloque generador. La misión de este bloque es proveer suficiente energía, durante las horas en que el sol los ilumina, para satisfacer no sólo los requerimientos nocturnos de la carga, pero, además, compensar por las pérdidas energéticas que ocurren al circular la corriente, las asociadas con la carga y descarga del banco de generación y un porcentaje de exceso para compensar, parcialmente, la desventaja de los días nublados.

Los paneles tienen un marco metálico y cubiertas en ambos lados (la superior transparente, la posterior metálica) que les dan un mínimo de rigidez mecánica, pero necesitan de un sostén para poder resistir los vientos o, en climas muy fríos, evitar que la nieve los cubra.

Para salvaguadar los paneles de los rayos siempre se utiliza una descarga a tierra, la que se conecta a la parte metálica del panel (o sostén, si éste es metálico). En el esquema de la Figura 1, esta conección está identificada por el número 2.

Bloque de Acumulación

Dos componentes están siempre presentes: el Control de Carga (CdC) y el Banco de Acumulación (BdA), identificados en la Figura 1 por los números 3 y 4, respectivamente. En algunos sistemas el CdC puede que esté físicamente cerca del bloque generador, pero en general, el CdC suele estar cerca del BdA, lo que facilita la posibilidad de ofrecer protección ambiental a ambos componentes. Los CdC modernos ofrecen, mediante el uso de microprocesadores, la posibilidad de optimizar la carga del BdA.

Un cortocircuito a la salida del BdA dañaría los acumuladores y es muy peligroso (posibilidad de explosión) y por ello se incorpora un fusible de alta corriente (fusible de baterías) el que, al fundirse debido al calor generado en el mismo, “abre” el circuito, cortando la circulación de corriente. Este elemento es el que lleva el número 5 en la Figura 1.

Dada la importancia de conocer el Estado de Carga (EdC) del banco de acumulación, suele incorporarse al circuito un monitor de carga. Originalmente, éste era un componente auxiliar, pero los CdC modernos incorporan la capacidad de monitoreo como parte integrante de los mismos.

El Bloque de Carga (BdC) en sistemas del tipo que describo, representa el consumo dentro de la casa-habitación. Observe el lector que los cables de alimentación del polo positivo terminan en una caja de entrada, la que se caracteriza por tener varios fusibles (No 7). Esto permite dividir la corriente total en secciones.

Esta división tiene dos ventajas. Un cortocircuito provocado por un componente no afecta al resto de la carga, de manera que si el TV sufre un desperfecto que aumenta anormalmente su consumo, sólo el fusible asociado con ese circuito se verá afectado, y, por lo tanto, las luces de otros cuartos permanecerán activas. La otra es que al dividirse el consumo total pueden utilizarse cables conductores de menor diámetro (menor corriente por circuito) los que son más baratos y más fáciles de instalar.

La caja de entrada debe ser conectada a tierra, así como el negativo de alimentación, por razones de seguridad. Esto evita diferencias de voltaje entre el usuario y el aparato eléctrico con el que entre en contacto. Esta toma de tierra, en la Figura 1, lleva el número 8.

Por último, existe un componente que no aparece como un bloque en particular porque está distribuído en todo el sistema. Este componente es el cableado, el que conecta los bloques entre sí, los acumuladores de reserva (cuando se usan más de uno), o distribuyen la corriente a las secciones que alimentan las cargas dentro del hogar. Su selección determina las pérdidas óhmicas y la capacidad de obtener el mejor voltaje de carga para el BdA o los componentes que integran la carga.

Ing. Hector L. Gasquet